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Abstract. Some aspects of the free-vibration analysis of rigid rectangular ship structure plates are considered. In
particular unusual mode shapes for square plates, to be derived in the FEM analysis of the problem, are explained by
using superposition effect. The family of fundamental solutions of the biharmonic equation in free-vibration problem
of rigid plates has been obtained. The solutions ware used for the mode shapes analysis of rectangular plates with
hinged and clamped sides supports. For the case of fully clamped plates the approximate asymptotic solutions ware
proposed too. Comparison of the results for fully clamped plates, derived by using FEM analysis and asymptotic solu-
tions, displayed close results.
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AHoTanis. Po3nisiHyTo 0COOMMBOCTI po3paxyHKy BJIACHHMX 4acTOT 1 )OPM BUIBHMX KOJIMBAHb HPSIMOKYTHHX KOp-
CTKHX CYIHOBHX TutacTiH. [TosicHeHO He3BMUaiiHi popMHM KONKMBaHb KBaJpaTHUX MacTuH. OTpuMano GyHaaMeHTanb-
Hi i aCHMIITOTHYHI PO3B'SI3KM OIrapMOHIYHOTO PIBHSHHS BUIBHUX KOJIMBAHb KOPCTKUX CYJHOBHX IUTACTHH.

KoarodoBi ciioBa: npsiMOKyTHI 11acTHHY; (JOPMHU BiIJIBHUX KOJIMBaHb; BJIACHI YAaCTOTH KOJIMBAaHb; OirapMOHIYHE piB-
HSIHHS; aCUMIITOTUYHUIN PO3B'SI30K.

AHHOTanusi. PaccMOTpeHBl 0COOEHHOCTH pacdera COOCTBEHHBIX YacTOT M ()OpPM CBOOOAHBIX KoJIeOaHWH MpsMO-
YTOJBHBIX )KECTKHUX CYZOBBIX IIacTHH. [TosicHeHBI He0ObIUHBIE (POPMBI CBOOOIHBIX KOJIEOAHMH KBaPAaTHBIX IJIACTHH.
[Momyuens! pyHIaMEHTaIbHBIE K ACHMIITOTHYECKHUE PEIICHUS] OMTapPMOHNYECKOTO YPaBHEHHUS CBOOOIHBIX KoJleOaHNH
CYZIOBBIX ITACTHH.

KoaioueBbie cioBa: npsMOyToJIbHBIE TIACTHHBL;, (POPMBI CBOOOTHBIX KOJIEOaHHH; COOCTBEHHBIE YacTOTHI KoJeOaHuii;
OMrapMOHHYECKOE YpaBHEHHUE; aCHMITOTHUECKOE PELICHHE.
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PROBLEM STATEMENT

The free-vibration problem of the rectangular plates
is a classical subject for the investigation in different
fields in mechanical, civil, aerospace and marine engi-
neering [1-3, 5]. Traditionally the method of principal
coordinates was the main instrumentation in the free vi-
bration analysis of rectangular plates [3]. The majority
of the theoretical and practical free-vibration and exited
vibration problems have been solved by using this simple
and transparent technique. New powerful impulse in the
vibration analysis of the different engineering structures
was generated by the using of numerical methods and
computer codes based on FEM analysis of the structures.
And now engineer, designer or investigator may practi-
cally use a lot of numerical instrumentation from the li-
brary of commercial computer packages like SolidWorks
Simulation, ANSY'S, Abaqus, MSC Nastran, etc. Never-
theless, in the field of classical analytical investigations
of the vibration problems some problems are not solved
exactly yet now. For example, an exact solution for a ful-
ly clamped rectangular plate has not been obtained yet
now, and it is currently outlined in the publications [4,
7, 8] that an exact solution would not be achieved in the
nearest future.

ANALYSIS OF THE LATEST STUDIES
AND PUBLICATION

Hence to obtain correct mode shapes and natural fre-
quencies of fully clamped rectangular plates a number of
approximate methods were developed during the last cen-
tury [1, 5]. These methods are based on different concepts
like Fourier analysis and superposition principle, pertur-
bation technique and asymptotic expansions, fundamen-
tal energy principles and algebraic procedures (Rayleigh—
Ritz or Bubnov—Galerkin methods) etc. [1, 2, 5].

For example, the superposition of hybrid cylindri-
cal Bessel functions for free vibration analysis of fully
clamped rectangular plates is presented in modern paper
[4]. Different approximate asymptotic methods observed
in handbook [1]. A number of approximate methods for
the calculation of free vibration mode shapes and natu-
ral frequencies ware especially discussed in report [5].
Most of the methods discussed ware based on the energy
formulations of the problem and different numerical pro-
cedures.

Classical solutions for rectangular plates with typical
side supports are presented in handbooks [1, 2]. Among
the approximate solutions for the fully clamped plates to
be presented in [1, 2], one of them is Iguchi method. This

method includes polynomial and trigonometric approxi-
mations of the mode shapes and Fourier analysis of the
resulting expressions. The method displays good results
for the natural frequencies in comparison to some other
methods [1, 2] and for mode shapes in comparison to
FEM numerical results.

In addition to the above discussed aspects of the
problem the application of the FEM technology dis-
played some unusual mode shapes for square plates both
for hinge and clamped supports. It is important to say that
in latest publications [6, 8] results included such unusual
mode shapes among others, but no any attention has been
paid by the authors about this phenomenon.

THE AIM OF THE ARTICLE. As the result of the
discussion three goals have to be achieved in the article.
The first goal is to revise the fundamental solutions of
biharmonic equation and find out the exact solution for
fully clamped rectangular plates. The second goal is to
explain the existence of unusual mode shapes in the fa-
mily of mode shapes for rectangular plates. And the third
goal is to obtain simple and efficient asymptotic solutions
for fully clamped plates.

PRESENTATION OF THE BASIC MATERIAL

1. Formulation and analytical solutions of the
problem

Governing equation in the free vibration problem for
the rigid rectangular plates is the biharmonic partial dif-
ferential equation in Cartesian coordinates [3]

DV*V2w(x,y) - o’ phw(x,y) =0, 1)

where w(x, y) is the mode shape; operator V>v? = o*/ax* +
+20*/ox*ay* +0*/oy* is biharmonic differential operator;
o is a natural frequency that is matched to the vibration
mode w(x, y); p is a mass density and % is a thickness
of the plate (Fig. 1); D = Eh*/12(1-?) is the cylindrical
bending rigidity of the plate; £ and v are being the Young's
modulus and the Poisson's ratio coefficient, respectively.
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Fig. 1. A sketch of rectangular plate
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For the complete formulation of the problem bound-
ary conditions on the plate sides must be added to the
Eq. (1). Because of only hinge and clamped (build in)
side supports would be the interest of the analysis in the
paper we should consider now formulation of the bound-
ary conditions for these kinds of supports only. In par-
ticular, if some side of the plate is hinge constrained on
the nonelastic support then boundary conditions are as
follows: deflections and bending moments on the side
must be equal zero: w = 0, M, = 0 or M, = 0, where
M, =—-Dd*w/0x* stands for x-direction and M, =-D6*w/0y*
stands for y-direction. Correspondently for clamped non-
elastic side supports boundary conditions are: deflections
and angles of rotation on the side must be equal to zero:
w=0,a, =0ora =0, where a, = ow/Ox stands for x-di-
rection and a, = Ow/dy stands for y-direction. In the paper
we should consider only fully hinge supported (simple
supported) plates, fully clamped plates and plates with
two opposite sides are simple supported but two other op-
posite sides are clamped.

For the analytical solution of the problem we should
use Fourier (splitting) method. According to the method

solution of the Eq. (1) is as follow
w(x,y)=X(x)-Y(y)#0. 2

Substitution of the solution (2) into the Eq. (1) trans-
forms it to the form

XIV XII YII

L

X X Y Y

(€))

where y = a/b is a ratio coefficient for side dimensions of
the plate (see Fig. 1); @ = @’a’ph/D is nondimentinal
square of natural frequency; X" = d>X/de?, Y" = d*Y/dn>
and so on; normalized coordinates & = x/a; n = y/b (0 <
<(&n) < 1) are used in Eq. (3).

Equation (3) wouldn't be spitted into two separate or-
dinary differential equations for unknown functions X(x),
Y(y) and to do this we have to formulate some additional
conditions for the functions X(x), ¥(y). Equation (3) may
be spitted into separate ordinary differential equations if:
1) x"/X =C, =const or 2) Y"/y =C, =const. Consider
these two options in details.

In the first case when condition X"/X = C, = const
takes place equation for Y(y) would be as it follows

Y'YV +2y’CY" +(CF - ®°)Y =0. Solutions for the func-
tions X(x) and Y(y) may be derived in the Eulerian form
X(x) = Aexp(ax) and Y(y) = Bexp(Py) with the following
characteristic equations: a? — C, = 0, y*B* + 2y>C,* +(C*

x@)p=0 and their roots a,=+/C/, B,=+y"B,.
Bs4 =y 'B_, where B, =,/C,+®. Solution for the func-

tion X(x) would be in trigonometric functions if constant
C,is a negative value say C, =—(c;)’, and it would be in

hyperbolic functions if C, is a positive value say C, = (o, )"
Then the resulting expression for the first fundamental
solution of biharmonic equation (1) would be
W (& M) = X,(8)-1,(m) = (4, cosh o7& + 4] sinh o &)
x [(Blt coshB’n+ B, sinh Btn)Jr (bfC cosBin+b. sin Bin) +
+ (al'c cosc, & +ay, sin cl'é)x

X [(Bfl, coshB.n+ B, sinh B;n)+ (bfl, cosP_m+b, sin Bjn)],

“4)

Bi

le,s>

where values A"

1c,s9

ay.,, by, are integration con-

stants; o, >0 are splitting constants and it is denoted

B —yot (o). s —yotlor) -

In the second case when condition Y"/Y =C, =

=+(x;)’ = const takes place solution of the problem
may be derived in the same way and we would have

Wy (&) = X, (8)- Y, () = (B, cosh i + B, sinh i)
x [(A;c cosha’€ + 45, sinh at§)+ (a;, cosa &+ a,, sin ai&) +
+ (bz’c cosK,M+ b, sin K;n)x

X [(Az'(, cosha &+ 4, sinh a:§)+ (a;C cosa, & +a,, sin (13’;)],

)

where again values 4., B,

2¢,s° 2¢,s°

+ + : :
a,,,, by, , are integration

2¢,s

constants; &, >0 are splitting constants and it is denoted

ol :\/Foi(xg)z , o :\/E)i(lc;)z .

In the complete family of the fundamental solutions
(4) and (5) w(x, y) = w, + w, we would consider partial
solutions w,j=1,2as independent solutions so that
equality a,w, + a,w, = 0 takes place when all factors a,
are equal to zero.

2. Application of the fundamental solution to the
rectangular plates

Consider now the application of the fundamental so-
lution to the rectangular plates with typical side supports.

2.1. Fully simply supported plates. In this simplest
case of the plate supports boundary conditions include
only even orders of the derivatives in both directions as it
takes place in the governing biharmonic equation (1) and
there are no any problems in the satisfying of the bound-
ary conditions for this kind of side supports. In particular,
from the boundary conditions on the sides E=0and &= 1
of the plate it follows that; 1) 4° =4, =4~ =4,

lc,s 2¢,s lc,s 2¢,s

=a/, =a;,, =0; 2) splitting constant o, and parame-

ter o~ must be determined as the roots of the equations

sing" =0 sina”=0. It means that oy =mn and

o =®-(x;)" =mn, m,m, =1,2,3, ... correspondently.
The same boundary conditions on the sides 1 = 0 and

n = 1 would give analogical results for the integration
constants B/, , b, andconditions sink; =0, sinfZ=0

1,2¢,s
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so we can write again that k, =nn and B- =®—(c;)’ =
=nm,n,n =1,2,3, ... . Finally solution for the mode
shapes and natural frequencies would be

W, (X, ¥) = a; by, sin mn&-sin ntn+ a,.b,, sin mn&-sin nmn,

(6)

~ 2 2 2.2 2 2 2.2
0, =" (m +yn)=n"(m +yn"),mnm,n=1273,....

m

In particular case when m = m and n = n, we have
got the well-known classical result [1, 2], but solution (6)

Table 1. Unusual mode shapes of square plate

has a little more general form and the question is what
does it mean?

Application of the FEM technology for the solution
of the problem displayed some specific mode shapes that
ware looking very unusually in comparison to the tradi-
tional mode shapes for rectangular plates [1, 2] (numeri-
cal calculations were carried out by Master of engineer-
ing D. Litvinenko). In Table 1 some unusual mode shapes
are illustrated.

Unusual mode shapes

Ne -
i Top view

Side view

From the classical point of view positive and nega-
tive deflections of the mode shapes must be positioned
periodically in both directions over the plate, but in the

Table 1 one can see specific skewed, axially symmetric
and daisy forms of the mode shapes. Classical and modern
publications [1, 4-8] don't concentrate attention on these
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unusual mode shapes and we think that this phenomenon
may be explained it the framework of solution (6).

From the formula for the natural frequencies in Eq.
(6) it follows that mode shapes with different numbers
(m, n) and (m,, n) would refer to the same natural fre-
quency when condition (m*+y*n®)=(m’+y*n’) takes
place. For the simple case of square plates when y = 1 it
means that equalities m, = n, n, = m take place. In more
general case of rectangular plates with the rational value
of the ratio coefficient y=k/s, k, s =1, 2, 3.... correspond-
ing equalities are m = nk/s, n, = ms/k within the condition
m n, = nm. Some combinations of m, and n, are presented
in the Table 2.

Table 3. Samples of unusual mode shapes

Table 2. Some combinations of the mode numbers for un-

usual mode shapes

y=kis mxn =m xn,
12 | 2x2=1x4 | 3x4=2x6 | 4x4=2x8
2/3 | 4x3=2%x6 | 6xX3=2%x9 | 6x6=4x9
3/4 | 64 =3x8 | 9x4 =3x12 | 9x8 =6x12
3/5 | 6x5=3x10| 9x5=3x15|9x10 =6x15

Hence when different mode shapes correspond to the
same value of natural frequency we have to summarize
these mode shapes in the form (6). Samples are illustrated
in Table 3. This phenomenon may be named as superposi-
tion effect for unusual mode shapes.

Superposition Side view

Superposition Side view

wp, =X\ 1 + X1

wp, =X\1, - X0

w =X\ 1+ X5H

wy =X Y- X5,

wy =X, 1, + X5Y,

wy =X, - XY,

wy =X\ Y+ X1

w, =X Y, - X,

wy, = X, Y, +X,Y,

Wy =X, Y, - X7,

Wy = XY, + X,

Wy, = XY, - XY,

One can see that superposition of the mode shapes for
1> Wy W, and w, have an anti symmetric structure, but
superposition of the mode shapes for w , and w,, have an
opposite structure.

2.2. Plates with combined supports for opposite
sides. Consider the case when sides £ =0 and & = 1 of the
plate are clamped but other two opposite sides =0 and
1 =1 are simply supported. Then integration constants in
the y-direction must be the same as in 2.1, but boundary

w

conditions w = Ow/Ox = 0 on the sides in the x-direction
generate the following expressions

Day,,=0,a, =—4;,, ay, ==V 4, 4, #0; v, =a[a,
(7

2)2v, (1 —cosha, cosa” )— (1 v, )sinh o, sina_ =0.

Second expression in Eq. (7), to be considered as the
condition that w(x, y) # 0, after some algebraic manipu-
lations can be transformed to the well-known form
[3](tanhu, —v, tanu_)(tanh’1 u, —v, tan™' u_)z 0, u,=a,/2.
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Finally expression for the mode shapes is as follow

w,(x,y) = 4,, [(Cosh o, &—cos a:&)—
-3, (sinh -V, sin o[E,)]sin nmn,

®)

where §, = (sinha; —v, sina”)/(cosha; —cosa”) and va-

lues o) =y ®+y*(nm)*, n =1, 2,3, ... must be derived as

the roots (a),, of the transcendental Eq. (7). Corre-
spondingly the resulting expression for the natural frequen-

cies would be &, = (0t;)?, 7> (1m)* = (&), +7*(nm)’.

2.3. Fully clamped plate. Fully clamped plates
are the most difficult case from the point of view of
analytical solution of the free-vibration problem. In
this case odd order of the derivatives in the boundary
conditions in both directions doesn't match with the
even order of the derivatives in the governing equa-
tion and this fact generates the main difficulties in the
analytical solution of the problem. Substitution of the
fundamental solution (3) and (4) into the boundary
conditions w = Ow/Ox = 0 on the sides E=0and =1
and w = Ow/0y = 0 on the sides 1 =0 and 1 = 1 of the
plate leads to the final results that all the integration
constants in the solution for this kind of supports torn
to zero. The main reason for this related with the even
derivatives in governing equation but odd derivatives
in boundary conditions.

3. Asymptotic solution for fully clamped rectangu-
lar plates

Consider in this chapter approximate asymptotic so-
lutions for fully clamped plates. Investigators have found
quite a long time ago that mode shapes in the majority
part of the plate are the mode shapes of simply supported
plates, but with some minor transformations close to the

plate sides [5] (Fig. 2).

Fig. 2. Samples of the mode shape sections for fully clamped
plate

Different asymptotic techniques are based on these
findings. Consider for the beginning so-called matching
asymptotic approach. According to this approach plate
area separates into the outer and inner domains (Fig. 3).

For inner solution of the problem mode shapes may
be written in the form: w" (x,y)=sin[mn(x —Aa)/a,] ¥
xsin[nm(y—Ab)/b,], where values a, = a — 2Aa and
b, == b —2Ab are the effective (reduced) dimensions of
the plate.

Aa.LL/ Ab /a, /x
i
y

Ly

Inner domain  \outer domain
a

sin (max/a,)

X
out o~
X
7 in
éé a
X,
74 % a )|

b
Fig. 3. Sketch of the inner and outer domains for the rectangu-
lar plate (@), and matching of the outer and inner solutions for

X(x) (b)

Because of the outer domain is the collection of very
narrow strips along plate the outer solution in x-direction in

the basic approach would be W), (x,y) = X*"'(x)-Y,"(y) =
- z:} Ax' -sin[nm(y— Ab)/b,]. Analogically in y-direc-

. 3 .
tion W°"‘(x,y)=z;oB,.y’ -sin[mn(x - Aa)/a,]. From the

mn

boundary conditions on the clamped sides of the plate it
follows that 4, = 4, = 0 and B, = B, = 0. To determine
the other coefficients we should use matching condi-
tion in some points x = x, and y = y, for the deflections

and first derivatives: w®' = w'®

mn mn 2

owe™ [ox = ow’™, Jox and

mn

owe™ [ay = ow®, Joy correspondingly.

Additionally for the determination of the unknown
matching points x,, y, and reduction values Aa and Ab
for the plate sides we should us matching conditions for
the second and third derivatives of the both solutions. Af-

ter all mathematical manipulations results would be: x, =

2.45Aa within the condition mnx,/a, =1 from which it
follows that Aa=Aa, =a/(2+24mn), m =1, 2,3, ... .
And finally the outer part of the solution in x-direction is
as follows

Wi (x, y) = [0.62382(1-0.2228,) ] sin[nm (y — AB) /b1,

& =x/x, €[0;1], 9)

with the equation for the spectrum of natural frequencies

®,, = [(m+v,) +y*(n+v,)*],mn=1,2,3, ..., where
v, =v, =1/121=0267.
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Comparison the results of the matching asymptotic
solution (9) for mode shapes with the numerical results
obtained in the framework of FEM technology dis-
played quite good coincidence, but comparison the re-
sults for natural frequencies with the Iguchi calculations
[1] is not acceptable. Value v = 0.267 is off the interval
[0.34; 0.48] for Iguchi approximate solution.

Then consider another version of the solution (boun-
dary perturbated solution) which is based on the assump-
tion that perturbations generated by the boundary condi-
tions diminish very fest and practically are zero in the
inner domain of the plate. In that case mode shapes may
be written in the form [1]

w,,.(x,y) = [sin mn(x— Aamn)/ag + AXm”(x)]x

10
x[sinnn(y—Abm”)/bg +AYmn(J’)]’ (10

where functions AX (x) and AY, (v) must torn to zero in
the inner domain of the plate and a, = a —2Aa, ,b,=b —
—2Ab, are reduced dimensions of the plate.
Substitution of the solution (10) into the governing
equation and boundary conditions lids finally to the fol-
lowing results:
1. Equation for natural frequencies:

(1)

~ 2 2 2 2
O)mrl:TE [(m+vmn) +Y (n+vnm) ]’

wherev ~=2mAa /a,v =2mAb /b

nm e

2. Boundary perturbated parts of the mode shapes:

AX,, () = a,, exp(-7,,&) + (=1)""a,, exp(-r,, (1 - a)),} 12)
AY,, () =b,, exp(-7;,n) + (=1)""'b,, exp(-7,, (1-7)),

where it is denoted a, =sin(-q,Aa,,/a), b, =

=sin(=p,Ab,,[b); 1, =qn+2Y’'prs T =

4n+ 217 P
p, = nublb, q = mmnala, and factors (—1)"" and (-1)""!
regulates even and odd mode shapes.

3. Equations for the reduction values Aa, and Ab, :

1

Ji+2v p2/g2

1 (13)
Ji+2v2 2 [

Because the algorithm (10)—(13) have recurrent struc-
ture in Eq. (13), iteration procedure must be applied in the
calculations of the values Aa, and Ab_ . But systematic
numerical calculation displayed very minor corrections
in the results for natural frequencies and in general no
more than one iteration procedure may be recommended
in the practical calculations.

Comparison of the author’s results for natural fre-
quencies ® = with approximate Iguchi results for the val-
uesm,n=1,3,5and y=1.0 and 0.5 (see [1]) presented
in Table 4. Values A in the table present discrepancies (%)
between these results for natural frequencies.

tan(mnAa,,, /a,) =

tan(nnAb,,, /b,) =

Table 4. Comparison of the author results for natural fre-
quencies @, (lower values in the rows) with Iguchi results
(upper values)

Y m=1 3 5

10 360 [ A, % | 131.9 | A, % | 309.0 | A, %

n=1 ] 35.1 2.5 | 131.6 | 0.23 [ 308.9 | 0.03
24.6 124.0 302.0

0.5 24 1.6 1232 0.65 30090 0.36
131.9 220.1 3934

3 1.0 131.6 0.23 219/3 036 392.8 020
44.8 142.4 320.1

0.5 44.4 0.89 142.1 021 320.0 03
309.0 393.4 562.2

5 1.0 3080 0.03 3928 0.20 5615 0.12
87.3 181.8 358.0

0.5 270 0.34 1814 0.22 3588 0.22

Only for two frequencies w,, and ,, the values of the
discrepancies are large then 1 % and are localized in the
interval [1.4...2.5 %], but for all other frequencies @ _,
m, n>2 values of the discrepancies are smaller and much
smaller than 1 %. It means that proposed algorithm may
be used as vary simple and no labor procedure for the
estimation of natural frequencies for fully clamped rec-
tangular plates.

Comparison of some mode shapes derived by using
FEM technology and with asymptotic solutions elabo-
rated in the paper is illustrated in Fig. 4.

N /
-1 // 1
Fig. 4. Results for the first and third mode shapes of ful-

ly clamped plate: ----- — FEM: — — matching solution;
+ + + — boundary perturbated solution

CONCLUSIONS

1. Application of the fundamental solution to the fully
clamped plates displayed that the solution can’t satisfy
boundary conditions in that case (all constants of the integra-
tion torn to zero), but for the other side supports the results
of the application ware successive. The main reason for this
failure is that biharmonic equation includes only even de-
rivatives but boundary conditions include odd derivatives.

2. Two versions of asymptotic solutions for the fully
clamped plates displayed good results for mode shapes
and second version displayed good results for natural fre-
quencies too.
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3. Unusual mode shapes (skewed, axially symmet- In these special situations unusual mode shapes are the

ric and daisy shapes) take place when different vibration result of the superposition of the partial mode shapes
modes have the same natural frequencies o =o . (XY +£X Y ).
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(2]
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