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Abstract. The generalized multi-scale technique for the solution of Nonlinear Schrédinger Equa-
tions (NLS) of the 3-rd to 5-th order in nonlinearity for surface deep-water waves has been devel-
oped. The generalization is directed to suppressing the nonphysical secular solutions in the high
approaches. The complete family of the stationary solutions of the 3-rd order NLS equation has
been derived in terms of elliptical Vejerstrass and Jacobi functions.
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AHoTanis. Po3po6ieHo y3aranpHeHH MeTOA 0araThboxX MaciuTabiB s po3B’sI3aHHS HETIHIHHUX
piBusHb [peninrepa (HPIII) 3—5 mopsakiB 3a HEMIHIHHICTIO JJ1 TOBEPXHEBUX XBUJIb Ha TIIMOOKIH
BOJi. Y3arajbHEHHS CIIPSIMOBaHI Ha MONOJaHHs HE(I3MYHUX CEKYISIPHUX PO3B’S3KIB y CTapIINX
HaOmmKkeHHAX. OTpUMaHO TIOBHUH Kiac crarioHapHuX po3B’s3kiB st HPI TpeTsoro mopsaxy y
TepMmiHax eninTuuHuX QyHKIiH BeepmTpacca i SAko0i.

Kaio4oBi cioBa: moBepxHeBi XBHIII HA BOJI, HENiHIWHICTE, piBHAHHS Llpeninrepa. cramioHapHi
PO3B’SI3KH.

AnHotanusi. Pazpaboran 00001IEHHBII METOJI MHOTHX MacIuTaOOB JUIsl PEIICHUs] HEJTMHEHHBIX
ypaBrenwuii llIpenuarepa (HYLL) 3—5 mopsaakoB mo HEMMHEWHOCTH AJIs TOBEPXHOCTHBIX BOJH Ha
rmy6okoit Boge. O000IIeHNS MPEANPUHSTHI C TENBIO TIOAABIEHUS HEQU3MUECKUX CEKYISIPHUX pe-
LIEHUH B cTapiuux npuommkennsx. [lomydeH monHbIN Kiacc craliMoHapHbIX pemenuit st HPII
TPETHETO MOPs/IKA B TEPMHUHAX IMNTHYECKUX (QyHKIMA Beepmrpacca u SIkoon.

KutioueBble cj10Ba: MOBEPXHOCTHBIC BOJHBI HA BOJIE, HEJIMHEWHOCTh, ypaBHeHus LlIpeaunrepa,
CTallMOHApHBIE PELICHUS.

INTRODUCTION

In the beginning of the second part of the
last century after the discovery of the famous
Benjamin and Fair amplitudes envelope in-
stability of weakly nonlinear surface water

equations — the lowest order of the equations
for deep-water surface waves [3, 9, 13, 18].
A number of soliton and periodic solutions of
the equations have been derived for the formu-
lations of different physical problems [3, 4, 9,

waves, the Nonlinear Schrodinger Equations
of different orders became the most effective
and powerful theoretical technique for the in-
vestigations of modulated wave trains [3-5].
The first attempts of using the technique were
related with the solutions of the 3-rd order NLS

13, 16, 18]. Experimental investigations have
proved the effectiveness of the NLS technique
[6,7, 11].

Then NLS equations of the 4-th and 5-th
orders in the nonlinearity were involved into
the consideration [5, 8, 10, 11, 14, 15]. These



equations included the effects of drift mass
transport in nonlinear waves groups and higher
order nonlinear and dispersion effects in wave
motions, and allowed to describe the recurrence
and frequency down-shift phenomena [7, 17].
But the attempts to obtain the asymptotical
solutions of the NLS equations of high order
displayed the existence of nonphysical secular
terms in the solutions [3, 15].

THE MAIN GOALS OF THE PAPER
are as follows: 1) to develop the generalized
version of the asymptotical solution of high
order NLS equations by using the multi-scale
technique for eliminating secular terms from

Vo, =0, z<(,;
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®,(¥,/) is velocity potential,
z=§ (x,y, 1) is wave surface, p* (x, v, t) is sur-
face wind pressure and V = (8/0x, 8/dy, 8/éz) is
the Hamiltonian operator.

The formulation (1) is nonlinear and the
main difficulties in the solution of the prob-
lem are related with the nonlinear boundary
conditions on the unknown wave surface. For

where
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where m,n=0,1.2,...; d, =[vd/ot + (VD - V)]
and factor v =2 for the derivative from the term
D and v =1 for the derivative from the pressure
p respectively. Eq. (2) includes the following
operators
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the solutions; 2) to derive the most complete
family of the generalized stationary solutions
of the 3-rd order NLS equation.

1. NLS EQUATIONS
FOR AMPLITUDE ENVELOPE
OF DEEP WATER WAVES

First of all, we briefly describe the proce-
dure of derivation of NLS equations for deep-
water surface waves. The original formulation
of the boundary-value problem for deep water
surface waves in the irrigational and potention-
al approximation of the wave motion is as fol-
lows [5, 15, 18]:

0,

z =

é/ur b

weakly nonlinear approach, it is possible to
simplify the formulation (1) by using the Tay-
lor series for the potential function @, (¥,¢) in
the vicinity of nondisturbed still-water plane.
Then the nonlinear boundary conditions on
the wave surface in (1) may be resulted in the
following modified form on the plane z = 0
[14, 15]:

=0, 2

ZO :_q)wt/g’ L((Dw):(q)wrt-’-gq)wz)’

D(q)w):(v(bw.vq)w)/z’ ﬁ:p“/p

In addition to eq. (2) there is an expression for
wave elevations in the explicitly form [14, 15]

+(VO, -V, )2+ p*/p], z=0.

To solve the modified boundary-value problem, the multi-scale technique has been used within

the basic formulations
D, =£(®, + D, + 220,
)?:g<k>)?, T =¢lo),
where ¢ is a small parameter considered as a
measure of nonlinearity and modulations ef-

fects in the wave motion, <o->, <k> = <0>2 / g are
the average values of frequency and wave

i), @, :qnn()?m,T);}, (3)

‘5‘ <1, X= (x,y,z),

number in the weakly irregular wave field re-
spectively and X,T are the slowly-varying
special and temporal coordinates, respecti-
vely.
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The application of the multi-scale tech-
nique [3, 6, 9, 14, 15, 18] to the nonlinear
boundary-value problem (1), (2) allows us to
transform it into the recurrent set of the linear
boundary-value problems in the perturbations

for the unknown potential functions @, in the
series (3). The solutions of these linear bound-
ary-value problems up to the 5-th order includ-
ing have been derived and the results are as
follows

®, =—id(X,T)exp®+cc, ® =d,(X.T);
®, =0, ®,=-itd,(¥ T)exp20+cc. : )
®, =i A, (X, T)exp20 i1 4, (X, T)exp30 + cc.,

where © = ¢ +i60 = (k)z + i(<0>t + <k>x) is the
complex phase coordinate, @, is a drift poten-
tial function; the amplitudes of high bounded
harmonics Ajk depend both on the complex am-
plitude of the fundamental wave mode
A=Laexpiy

and on the amplitudes of high harmonics A4,
Jj=L2,... in surface wind pressure for which
the order of magnitude is assumed to be about

(24, — 4, )+ L(4)- iﬁfAAz(l + %g&f

p’ ~0(g"), n=3, (for the severe sea condi-
tions).

The elimination of the secular terms from
the solutions (4) generated the so called NLS
equations for the amplitude Z()? ,T ) which
we would consider in the framework of pa-
per for the two dimensional free wave motion
for the simplicity. The 5-th order NLS equa-
tion can be written in the operator form as

follows
Az) -
(%)

—;géj[DIX(A)—;gDZX (4)+2iF(®, )} +0(e*)=0, z=0,

where the following notations for the operators have been used

L(4)= [_igAXx +152A§3) +65;83A§?)}’ D,,(4)= (7“4‘2‘4)( - A‘A‘i)

8

1 23
sz (A)= l:(DlX )X _‘A‘ZAXX +EAX‘A‘1 _2AA1}§ . (6)

F(q)dr)=|:AchrX _ig(él"ACDerX + AXq)er ]j|

Here in eq. (5) 62 =(5)’ /¢, the following
normalization of the variables has been used:
A=2ed, ®©, =28%8)"D,, (8)=(k)a).

)] =0, z<0;

dryy + q)drzz

2
X

D, +eb, =4 —%ngA\
o, —0, z—>-ow;
And finally in the fluid domain z < 0 ampli-
tude A has to satisfy the linear equation
A, —id, =0,

z<0; A=A, z=0, (8)

In addition to eq. (5) and (6) the following
linear boundary-value problem for the drift po-
tential function @, results from the multi-scale
technique

oady), Jrole?) z=0:b. %)

D, —0, |-

where Z = ¢z is the slowly-varying vertical co-
ordinate.

Equations (5)—(8) generate complete system
of the governing equations in the perturbations.



2. GENERALIZED
MULTI-SCALE TECHNIQUE
FOR THE SOLUTION
OF NLS EQUATIONS

Here in this section of the paper we would
describe the main formulations of the gener-
alized algorithm of the multi-scale technique
which includes three steps. On the first step we
would modify original slowly-varying inde-
pendent variables (X, T) to the new coordinates
E=2(X+172), t=€T/2 so that the first new coor-
dinate & is the variable in the coordinate system

N"(4)= (iAT + A+ A4

N = (NIII) _AN",
5

)
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moving with the group velocity, and the second
coordinate T determines the evolution of the
wave groups caused by dispersion and nonlin-
ear affects of the wave motion. In the new vari-
ables the derivatives would be

o o 1 o0 0 . 0"
—=—t+——, = ,
or o0& 2 or oX" o&"
and NLS equation (6) transforms to the follow-
ing operator form

N +iaN™ +&*N" +0(67)=0,  (9)

n=12,...

within the operators in the perturbations

, (10)

N = —*(NZV)gANLV - _%[(NLIH)&: _(ANLIV)f]+ AN,

Ly

where the «residual» parts of the high order operators N IIV, N IV are

AN" = [iAgr +857| A 4, +2i5 4D, 1

AN! =254l + D,(4)+ Fi(@,)

(11)

In eq. (10), (11) 8, = <5> / ¢ and operators D,(4) and F, transform to the following form in the

new variables

4 e

D,(4)= 55{(— 14%\,4\2/155 —144]; 4, + 214F A] + ?AAJ}

£, (q)dr): _ééj (7A(Ddr§§

The operator N;"(A4) represents the basic
NLS equation of the 3-rd order; addition to the
basic equation the operator N,” (4) transforms
it to the NLS equation of the 4-th order, and
finally addition the 4-th order equation the op-
erator N, (A) generates the NLS equation of
the 5-th order.

The second step of the algorithm is re-
lated with the asymptotic expansions of the
amplitudes envelope a = a(§, t, €) and per-
turbation phase v = y(&, 1, €) in the complex

+134.@,,).

amplitude 4 = a-expiy in the following form
[12, 18]

alg,r,6)=a, +ea, + &'ay + ...,

}, (12)
l//(f,f,é‘):l//o +ey, +82(//2 +..

where a/.(&, T) and \uj(é, T) are the unknown
functions to be determined from the perturba-
tion equations. Then any operator in the NLS
equation (9) N = (N z TINS )expi v, where
sub indexes «R» and «J» define real and imagi-
nary parts of the operator, can be expressed in
the following asymptotical series

Niy = (ngj”«f’ jgj‘/’j): N3t sol@go0r0)+ N5 i (@500, )+
+52N10;Jz((12,l//2;aojl)[/();al’(//l)-{— 0(53).
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For example, the explicit expressions for the operators N/

2ms 1= 0,1 are as follows

1 2 62 3

Nz = (— AWy +a,, — a0, 4, ),

N’”—[—( + )+ —( 2 + 2)+352 : ]
r = [T\ W T anW Jra, —\dy Yo Y, T al,, e dody )
ur

Njo = (ao, +2a,y,, +ay ¥, )n
1

N = [alr 2(“05 W, + Q¥ )+ (aol//l,:f + ay,.. )]

The attempts to solve the NLS equations like
(9) directly would generate for the amplitudes
a_, n>1 the secular terms to be proportional to
the values &*,7*, s,k =1,2,... For this reason
we have to arrange the third step of the algo- 6,=6, ()? T ) [3, 9] within the following con-

rithm on which we would use the new slowly-  ditions for their derivatives:

varying coordinates X =¢&&, T = &£ and new
nonlinear face coordinate

Ole, X,T)=5"0,+56,+£'0, +....

the first order derivatives

O, =0y =vy+ev,+&v,+..., vj=6/)?=vj()?,]~"), 13)
0. =0, =c,+¢60,+&°0,+..., (f‘/.:gj»f:aj(if) ,
the second order derivatives
0.=0,-v, =0,, j=012.. (14)

Here in eq. (13) the new unknown func-  of the solutions in the higher approximations.
tions v, ()? ,]N” ) and o, ()N( ,YN" ) have to be used  In the new variables X ,f ,0 the first deriva-
for eliminating the nonphysical secular parts tives 8/07, 9/0& became

iz&?ﬂ;@i +gza§+...,i=ag+ga'5 +&%0; +...,
T ot -

where
9
06

=0, 3 :(
a6

o-la+a~j, o’ =0,
00 or

B

5 o 8 5
0=, o=y L 9 a2y, 2
¢ =Vgg O (Vl 06 8)() =" %0

The second and high order derivatives 6° / 0T 0&, 0° / o0& * and others have to be defined by using
multiplication procedures

* o o & 8 0 _ 0 0 & 0 &

08 0F 08 dfar oF or or o0& oF of o8

and for example 0°/0&> =09, + &0\, + £°07, +--+ Where

2 2
& =Vo A0 = 2‘/0‘/1672"'2‘/0 0 ~ +87V~0i 5
o6 o6 080T 0oX 06

2 2 2
0% = (2V0V2+V2)872+2V167N+67‘3i+572
’ ol 00X oX 00 oX

In the new variables any operator Ny ,, can be rewritten in the following form

a

_ a a 2 a7 _
RJn — NR,Jno +5NR,J;;1 +é NR,Jn2 +..., n=0,12.
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For example, the explicit expressions for the third order operators N ,f]JOm, m=0,]1 are as fol-

lows:

N}%o = [_ a 6(r)l//o + 5251//0 ta, (82'7”0)2 + 5(»2‘13 ]v
N =[0%a, +20%a,0%, + a,0%y, |

Nlle[él = [_ aoalrl//o + 8155“0 - 2“0821//06.15‘//0]’

1
NI = {81(10 +2>0La0y, + aoalﬁt//o}

J=0

The explicit expressions for the high op-
erators are much more complicated and for this
reason they are not presented in the paper.

Finally we would divide the perturbation
phases v; into the two parts y/, = &~ 1// (X T >+

+1//j (0 X Tl Jj =0,L,2, where the first part v,
does not depend on the nonlinear phase 9, but
the second one i includes the dependence.

2
Vo aow

3. STATIONARY SOLUTIONS
OF THE 3-RD ORDER
NLS EQUATIONS

For the basic 3-rd order approxima-
tion, the Nonlinear Schrédinger Equations
in a real form resulted from the conditions

N1[e[(§0 :N%o =0
can be written as follows

—4a [(wo + 007?0)"' (ko + Vo)?o)z]"‘ 53‘13 = 0,} (15)

ay, [0 + 20, (ko +vo )|+ VianZo, = 0;

where the following variables are denoted
a)O(X,T)z Wors ko(XaT)z Yoxs Xo=Woo;
physically w, and k; determine the basic linear
part in the perturbations of circular frequency
and the wave number for the fundamental har-
monic in the wave motion, respectively, and ¥,
is the nonlinear part of the perturbations.

First of all, we would consider the particular
case when v, = 0 in the series (13). Then from

Ay, —a[(a)ov -0y, ~k0">+(ﬁovf+f2)]+ Slal-a’ =0,

ae(aov +2;?)+a-;79 =0,

where a, y are the modified unknown variables
according to the relations
ay=a,-a, y= ()?0 +ko/Vo>s a, = aS(X,T)
is some characteristic value of the amplitudes
and the following relations are denoted
2 2

@y, = a’o/Vo » Oy, =O'0/V0 > ko,, =ko/Vy»

=52 /ve.

For the solution of the eq. (16) we would
start from the simplified case when ¥, =0 and
correspondingly (6)~ 0. In particular it
means that phase 7, can be formally includ-
ed into the phase i in this case. Then from

the condition (14) it follows that , = 0 and
from the first equation in (15) we would have
@, = —k; +62a; and from the second equation
results a (0)=const respectively. These results
describe the well-known periodic Stokes waves
of the 3-rd order [14], and because we would
consider the general case of modulated wave
motion, we suppose that v, # 0. In this case
eq. (15) can be transformed to the following
form

; (16)

the second equation in (16) it follows that
Zo = —(kov +0,, / 2) and the first equation can
be transformed to the resulting equation for the
amplitudes envelope in the canonical form

() i) achiadan

dg

where §=96,a, -6/y2 is a modified phase
coordinate and coefficients in the equation are
as follows a’=Q,-R/2, a=Q,(1-R/2).
Here the next values are denoted too

Q, =20,/86%a’

Q, = [wov — 0, (kov +0,, /4)] >
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R=|1-(1- 20,67 /02)"]
and ¢, > 0 is a positive integrating constant.

Eq. (17) has the solution in the terms of
Jacobe functions — so-called delta-function
dn(9;m), where m e [0:1] is the square of modu-
lus of the function. Thus we can write the solu-
tion in the resulting form

a(9)=dn(9;m), ac|(l-8a/a,)];
Q=877 (1-m/2), ¢ =8ai(1-m)/2:(, (18)
m= [1—(1—6a/as)2]

where values ag and 6@ are the maximum am-
plitude and the depth of the amplitude modula-
tion in the wave motion, respectively.

There are two well-known asymptotical
cases for the solution (18) [15]: 1) station-
ary Stokes waves with a(.9) =const for the
case when m = 0 and 2) soliton solution with
a(9)~ ch™'(9) for the case when m = 1. The
solution a(9) = dn(9;m) is a periodically mod-
ulated solution for the envelope of wave ampli-
tudes in wave groups.

8 Q

The generalization of the solution (18) fol-
lows from the assumption that nonlinear part
of the perturbation phase ¥/, (9) # 0 and than
Yo (0) # const. In that the most general case the
second equation in the system (16) can be inte-
grated with the results

;?(49) = —%O‘OV +ea’’,
. p (19)
7,(0)=7, - By 0,0+ Cl_[a_z (6)ae,
0
where ¥/, and c, are arbitrary integration con-
stants.

Multiplying the first equation in the system
(16) by the value a, an then integrating it one
time allows us to obtain the following equation
for the new modified variable ¢, = —a’ in
the canonical form

dg :
(d;j = 4q§ —&290 — 83> (20)

where the coefficients (so called invariants) g,
g, and value o are described by the formulae

_ L Qg 3 8c, _g_3%
£ st sat ) ® 27 5%°

Note that for the particular case when ¢, =0
and ¥/, (6’) ~ 0 eq. (20) transforms to the equa-

2Q.c c?
+§5fag - 52;2} a=2Q,/352a2).

tion (17) within the following expressions for
the values a, g, and g,

a zi(l—lmj, g, :§(1—m+m2)e[l;4/3],

2
8

g = _(1 —;m](Zm —1)m+1)e[-8/27;+8/27]

27

Wejershtruss function p(v; g,,g,) [1, 2] is
the solution of the eq. (20) thus

q0(3)=g0(19;g2,g3)= 50(‘9;31’32763) , (21)

where e,j =123 are the roots of the polyno-

mial in the right hand of eq. (20). These roots
have to be defined according to the rule

‘el‘ﬁ‘ez > 6 :_(el +ez)

by choosing from the following three values

&> &> 2z
€, =.|—:Cosy, e =, —-cosfy+—]|,
V3 4 V'3 (7 3}

g, 2r 1 3g,
e =.|2%.cos| y——|, = —arccos|
o) -

(22)

The solution (21), (22) would be real when the following condition would take place

A= g; _27g32 = 16(62 _‘33)2(‘33 _el)z(el —62)2 20.



The finite solutions satisfy the two combi-
nations of the roots
)e,2¢ 20,e,<0, pe [e3;el];
2)e,<e <0,e,>0, pelee],
where in the first case the roots would be

e, =—e,cosy,; <0: ‘;@‘S%;

), 622‘63‘—61 (23)

and in the second case respectively

B (7
e =e,-sin g—‘%

e, =e, cosy, >0; ‘;@‘S%;
e =-¢, .sin(Z—y3 j, e, =—e +‘el‘. (24)

In eq. (23) and (24), ¢, =Q,+/4 and an-
gle y, have to be determined from the equation

4cos’ y, —3cosy, = ;(/\/?, where
X = [(512 _1)+ 250/316 [_ 1;+1]’
A= (l—fo)e [0;""1]5 &= 512/53 ,

égo = Eo/ﬁg
and , ,
~ 8 . 8, = 4(‘% +koy)
B R L O 382

The domain of the real solutions is showed
on the diagram in Figure 1.

The generalized stationary solution of the
basic NLS equation of the 3-rd order has been
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derived in the terms of Wejershtruss elliptical
function 50(3; gz,g3): go(S;{ej }f) So for the
amplitude envelope we would have

a=as,/a0—g<)i195, (25)
where a is a characteristic value of the ampli-
tudes, a, = ZQO/(3§V2af )

From the practical point of view it is better
to operate in the calculations Jacobi elliptical
functions (sn, cn, dn) which are finite and sat-
isfy the following differential equations [1, 2]

osn)’ 2 2
(81/} :(l—sn v)(l—m~sn v),

((Eac:jz =1 —cnzv)[(l —m)+ m~cnzv], (26)

(‘Z‘T)z = (L—dn*v)[dn*v — (1-m)),

where me[O;l] is a square of modules of
Jacobi elliptical functions and it is denoted
v =9,/e, —e, . The additional relations between
elliptical functions are as follows [2]

cn’v +sn’v = msn’v +dn’v =
= m(l —cn®v)+dn*v =1.
To agree the canonical differential equa-

tions (20) and (26), we would write the follow-
ing transformations

o(I=r,+7°(v), S=nv
.

1
/gz =0

1/2

A

Figure 1.
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where J = (sn, cn, dn) and coefficients y ,
n =0, 1, 2 have to be determined from the
agreement. Resulting formulae have been de-
rived in the form

50(19): €3 +(ez —es)snz( € _33‘9):
=e, +(e, —e3)cnz(./e1 —e33)= 27)

=e +(e —e3)dn2( e —e33).

In this context, the values of the polynomial
roots {e, }, discriminate A and invariants 4, 4,
are related with the square of modules m and
the new parameter k = 2K (m)/@, (where K(m)
is an elliptical integral) by the formulae

1

e, :%kz(Z—m), e, :§k2(2m—1),

e :—%k2(1+m);
A=16k"m*(m-1), melod} (28)
g = §k4<m3 ) m+1)",
¢ = %;a(m 1Ym—2)2m 1)

From the formulae in eq. (28) it follows that
condition A = 0 (boundary conditions for the
real solutions) is possible when m = 0 (the value
of m for periodic Stokes waves) and when m=1
(the value of m for the envelope soliton solu-

tion). Condition g, = 0 is only possible when
m="Ys for m € [0;1] and finally condition q,>0is
satisfied for all values of m € [0;1].

CONCLUSIONS

1. Weakly and moderately nonlinear wave
motions with narrow bend spectrum — modu-
lated wave groups motions — can be effec-
tively studied by using the so called Nonlin-
ear Schrdodinger equations of different orders.
These equations, as governing equations (NLS)
for the complex amplitude of fundamental
mode in the wave field, are resulted from the
asymptotic solution of the boundary-value
problem for nonlinear surface water waves.
2. The attempts to solve these equations in the
forth and high order displayed the generation of
the non-physical secular terms in the solution
for amplitude envelope of the waves. For these
reasons special modifications and generaliza-
tions of the traditional perturbation technique
have to be applied to eliminate such terms from
the solution. The generalized multi-scale tech-
nique including nonlinear phase coordinate in
the perturbations can be considered as the ap-
propriate instrument for the suppressing of the
secular terms. 3. For the basic 3-rd order NLS
the most general stationary solution have been
derived in the terms of elliptical functions.
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