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Аbstract. The paper deals with the generalizations of short-term distributions of wind-generated 
wave elevations in sea conditions by using characteristic functions technique and corresponding 
asymptotic Gram–Charlier–Edgeworht’s sets. The generalization includes nonlinear effects into 
the Gaussian distributions. According to the approach, cumulants up to 12-th order have been de-
rived and its numerical estimations have been done by using nonlinear wave-group model of the 
6-th order for energetic component of irregular wind-generated wave field.
Кeywords: wind-generated waves, statistical distributions, nonlinear effects, Gram-Charlier-Edg-
eworht’s sets.
Анотація. Розглянуто нелінійне узагальнення короткотермінових розподілів для ординат 
вітрових хвиль у штормі із застосуванням техніки характеристичних функцій та асимпто-
тичних рядів типу Грама–Шарльє–Еджворта для екстремальних значень хвильових ординат. 
Кумулянти в асимптотичному ряді отримано до дванадцятого порядку, а їх числову оцінку 
виконано із залученням нелінійної групової моделі хвиль Стокса шостого порядку.
Ключові слова: вітрові хвилі, статистичні розподіли, нелінійні ефекти, ряди Грама-Шар-
лье-Еджворта.
Аннотация. Рассмотрено нелинейное обобщение кратковременных распределений для 
ординат ветровых волн в шторме на основе использования техники характеристических 
функций и соответствующих асимптотических рядов типа Грама–Шарлье–Эджворта для 
экстремальных значений волновых ординат. Кумулянты в асимптотическом ряде получены 
до двенадцатого порядка, а их численная оценка выполнена с использованием нелинейной 
групповой модели волн Стокса шестого порядка.
Ключевые слова: ветровые волны: статистические распределения, нелинейные эффекты: 
ряды Грама-Шарлье-Эджворта.
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INTRODUCTION 
The traditional point of view on the short-

term statistics of irregular wind-generated waves 
is based on Gaussian well-known probability 
distribution for vertical wave elevations ζw and 
on Rayleigh probability distribution for wave 

heights hw [1, 2, 6, 9]. These distributions have 
been applied very widely in the solution of differ-
ent sea-keeping problems, in the estimations of 
ship strength in real sea conditions, in ship design 
procedures etc. Gaussian probability distribution 
function for wave elevations ζw is as follows:
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and Rayleigh probability distribution function for wave heights hw has the following form
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where ζζ =σ D  is the r.m.s. value of wave elevations.

 (1)



 ЕЛЕКТРОННИЙ ВІСНИК НУК • №1 • 2010

where 
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where ζζ =σ D  is the r.m.s. value of wave elevations. is the r.m.s. value of wave el-
evations.

Gaussian and Rayleigh probability distribu-
tions are based on the assumption that irregular 
wave motions are linear physical processes and 
for Rayleigh probability distribution there is an 
additional assumption that the wave frequency 
spectrum Sw(σ) is narrowband [1, 2, 6].

For the lust two decades the satellite moni-
toring of the World Ocean surface has been 
used very extensively and the results obtained 
showed that for extreme waves Gaussian and 
Rayleigh probability distributions are not cor-
rect [4, 5, 10]. See, for example, the distribu-
tions in Fig. 1, a for wave crest elevations h+ and  
Fig. 1, b for extreme wave heights hmax. This 
Fig. displays that, for extreme waves, real sta-
tistical distributions are significantly greater
than it follows from the distributions (1) and 
(2). According to the latest statistical data, ex-
treme waves have significantly high levels of
the probabilities than it follows from the classi-
cal distributions (1) and (2).

This fact seems very important for the safe-
ty of ships in extreme sea conditions, because 
extreme waves may cause serious damages of 
ship structures (see Fig. 2, a for aircraft carrier 
and Fig. 2, b for tanker).

Therefore further research work in the in-
vestigations of real statistics of windgenerated 
waves, especially in extreme sea conditions, is 
very vitally needed. The investigations can be 
arranged on the basic of information obtained 
from special satellite equipments and system-
atic monitoring of the World Ocean surface and 
from the other hand on the advanced theoretical 
investigations in this traditional area of proba-
bilistic theory. The main idea is to include the 
nonlinear effects in the wave surface, which 
take place for the extreme waves, into the 
theoretical probabilistic models for main wave 
characteristics — wave elevations, wave am-
plitudes, wave heights and periods.

This paper deals with the nonlinear gener-
alizations of short-term distributions of wind-
generated wave elevations in real sea conditions 
by using characteristic function technique and 
corresponding asymptotic Gram-Edgeworht’s 
sets. The traditional approach is considered in 
beginning of the paper, but the alternative ap-
proach based on the modification of the tradi-
tional technique is discussed late. The second 
part of the paper deals with the theoretical es-
timations of the cumulants of the characteristic 
function and comparisons of the results ob-
tained with the independent experimental data 

and Rayleigh probability distribution function for wave heights hw has the following form
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Fig. 1. Comparisons of Rayleigh probability distribution (solid line) with the experimental data (symbols): 
а — laboratory data; b — field data

a b
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are considered too. Finally the problem of the 
convergence of the asymptotical sets is briefly
discussed.

1. CHARACTERISTIC  
FUNCTION TECHNIQUE

For the purpose of nonlinear estimation of 
short-term marginal probability distribution of 
wave elevations here we would use the socalled 
characteristic functions technique [3, 6]. Accord-
ing to the technique probability distribution func-
tion p(ζw) and characteristic function Ф(k) are re-
lated by the following Fourier-transformation
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where k is the real parameter of the characteristic function.
To estimate the characteristic function in the eq. (3), we would expand the exponential
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where µn are the n-th order moments of the distribution function p(ζw). These moments
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where k is the real parameter of the character-
istic function.

To estimate the characteristic function in 
the eq. (3), we would expand the exponential 
function expikζw in the power series of kn
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where µn are the n-th order moments of the 
distribution function p(ζw). These moments can 
be expressed in the terms of the moments taken 
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as

( ) ( ) !!2 22 nn n
n µ=µ , all odd moments torn to zero 012 ≡µ +n  and correspondingly all

cumulants 2, >λ jj  are totally eliminated.
After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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where correction factor �(ζw, λj) includes nonlinear effects in the wave elevations. This
nonlinear correction factor has been derived in the form
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as

( ) ( ) !!2 22 nn n
n µ=µ , all odd moments torn to zero 012 ≡µ +n  and correspondingly all

cumulants 2, >λ jj  are totally eliminated.
After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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where correction factor �(ζw, λj) includes nonlinear effects in the wave elevations. This
nonlinear correction factor has been derived in the form
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where ( )jn λΡ ~
 and ( )ζ~nE  are the algebraic polynomials of values j
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as
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After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as

( ) ( ) !!2 22 nn n
n µ=µ , all odd moments torn to zero 012 ≡µ +n  and correspondingly all

cumulants 2, >λ jj  are totally eliminated.
After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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where correction factor �(ζw, λj) includes nonlinear effects in the wave elevations. This
nonlinear correction factor has been derived in the form
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as

( ) ( ) !!2 22 nn n
n µ=µ , all odd moments torn to zero 012 ≡µ +n  and correspondingly all

cumulants 2, >λ jj  are totally eliminated.
After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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w Ipp λζ⋅ζ=ζ                                              (8)

where correction factor �(ζw, λj) includes nonlinear effects in the wave elevations. This
nonlinear correction factor has been derived in the form
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where ( )jn λΡ ~
 and ( )ζ~nE  are the algebraic polynomials of values j

jj ζσλ=λ~  and
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As it follows from the eq. (7), the complexity of the expressions for the high cumulants
and the numerical values of the coefficients in the expressions grow considerably. And it
is important to note that for Gaussian distribution even moments become as

( ) ( ) !!2 22 nn n
n µ=µ , all odd moments torn to zero 012 ≡µ +n  and correspondingly all

cumulants 2, >λ jj  are totally eliminated.
After deriving the cumulants of the characteristic function �(k) in some approach,

the eq. (4) has to be substituted into the Fourier-transform (1) and it leads finally to the
following expression for the distribution function p(ζw)
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where correction factor �(ζw, λj) includes nonlinear effects in the wave elevations. This
nonlinear correction factor has been derived in the form
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2. Evaluation of the cumulants. Resulting eq. (9)–(11) show that nonlinear correction
factor depends on the values of the cumulants of the characteristic function. There are
two ways for evaluating of the cumulants and moments, respectively: namely, the first
way is based on the experimental estimations for a number of irregular wave trains to be
generated in a wave tank or recorded in real sea conditions, and the second one is related
with the theoretical estimations of the moments by using appropriate nonlinear
hydrodynamic models for irregular wave elevations. The first approach has been realized
in NASA Wallops Flight Center in the USA and the results for the first eight cumulants
were presented in the publication [3]. The main ideas in the second approach have been
discussed by M.S. Longuet-Higgins and M.A. Srokosz in their paper [8] for the simple
wave model and the first three cumulants being considered. The results of the experimental
investigations are very important from the point of view of verifying the theoretical results,
but having the further research in view, we would like to consider the theoretical approach
starting from generalized nonlinear model for wave elevations.

Namely, we would consider here the nonlinear wave-group model of the sixth order
on wave steepness for the main energy-carrying component of irregular wave motion

( ) ( ) ( )∑
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εθεε=ζ
6
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,,,cos,,~

n
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where 2, ≥nan  are the slowly-varying amplitudes of high bounded harmonics in the
wave profile which depend on the amplitude of the first fundamental harmonic in the
wave motion aa ≡1 ; ( )εθ ,, tx  is the slowly-varying phase coordinate to be determined as

( ) ( ) mmmmmm gkktxtxktx =σλπ=εεθ∆ε+σ+=εθ ,2,,,,  and λm is considered

A.M. Serdyuchenko, T.V. Emeljanova
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2. Evaluation of the cumulants. Resulting eq. (9)–(11) show that nonlinear correction
factor depends on the values of the cumulants of the characteristic function. There are
two ways for evaluating of the cumulants and moments, respectively: namely, the first
way is based on the experimental estimations for a number of irregular wave trains to be
generated in a wave tank or recorded in real sea conditions, and the second one is related
with the theoretical estimations of the moments by using appropriate nonlinear
hydrodynamic models for irregular wave elevations. The first approach has been realized
in NASA Wallops Flight Center in the USA and the results for the first eight cumulants
were presented in the publication [3]. The main ideas in the second approach have been
discussed by M.S. Longuet-Higgins and M.A. Srokosz in their paper [8] for the simple
wave model and the first three cumulants being considered. The results of the experimental
investigations are very important from the point of view of verifying the theoretical results,
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2. Evaluation of the cumulants. Resulting eq. (9)–(11) show that nonlinear correction
factor depends on the values of the cumulants of the characteristic function. There are
two ways for evaluating of the cumulants and moments, respectively: namely, the first
way is based on the experimental estimations for a number of irregular wave trains to be
generated in a wave tank or recorded in real sea conditions, and the second one is related
with the theoretical estimations of the moments by using appropriate nonlinear
hydrodynamic models for irregular wave elevations. The first approach has been realized
in NASA Wallops Flight Center in the USA and the results for the first eight cumulants
were presented in the publication [3]. The main ideas in the second approach have been
discussed by M.S. Longuet-Higgins and M.A. Srokosz in their paper [8] for the simple
wave model and the first three cumulants being considered. The results of the experimental
investigations are very important from the point of view of verifying the theoretical results,
but having the further research in view, we would like to consider the theoretical approach
starting from generalized nonlinear model for wave elevations.
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as the average wave length of the energy-carrying component of irregular waves, e.g. in
the vicinity of spectral function's maximum; and, finally, 10 <<ε<  is a small parameter
describing slowly-varying modulations in the wave motion.

Amplitudes of the harmonics in eq. (12) have been derived by using the perturbation
technique for solving a nonlinear boundary-value problem for surface waves [7] and
these amplitudes can be written here in the following form
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where 2ww ha =  is the slowly-varying amplitude envelope of irregular waves;

wwwmw hak λπ==δ  is the slowly-varying steepness of wave slopes and numerical

factors ν ′′ν′ν ,, n
o
n  in the 6-th order nonlinear wave model are as follows [7]:
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1 =νo

n { } { },0;0;60127;2;32;836
1 −=ν′n

{ } { }.0;0;0;0;2411;1921216
1 −=ν ′′n

Note that inclusion of more high harmonics with 6>n  into the series (12) for the
wave surface adds insignificant modifications in the wave profile and only in the near
vicinity of the wave crests.

The steepness of wave slopes δw related with the steepness of the slopes of the first
fundamental harmonics δa = kma in wave motion by the following relation +δ=δ aw

( ).75
3
23

8
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aaa O δ+δ−δ+  The same form has the relation between slowly-varying amplitudes
aw and a, respectively.

From the other hand, we would suppose that variables a and θ are statistically
independent and these variables have the following distribution function
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Then the moments of the distribution nµ  may be evaluated directly from the basic
formulation
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After applying the integration procedures in the eq. (13), the resulting expressions
for the moments nµ  have been derived in the following form:
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After applying the integration procedures in the eq. (13), the resulting expressions
for the moments nµ  have been derived in the following form:
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After applying the integration procedures in the eq. (13), the resulting expressions
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After applying the integration procedures in the eq. (13), the resulting expressions
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Then the moments of the distribution 
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can be expressed in the terms of the moments taken respectively to the mean value (or
central moments) nµ  of the distribution function by the following relations:

( ) ( ) ,,...,3,2,,
0

NndpmmC ww
n

wn

n

j
jn

jj
nn =ζζ−ζ=µµ=µ ∫∑

∞

∞−

ζ
=

−ζ

where 1µ≡ζm  is the mean value of wave elevations and this value is typically very small
for wind-generated waves in real sea conditions[1, 2, 6].

According to the traditional procedures [1, 3], the power series for the characteristic
function in eq. (4) are transformed into the following exponential form
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where λj is the j-th order cumulants of the characteristic function. For the estimations of
cumulants λj in terms of moments µn, we need to expand the expression (5) into the
power series and than to compare this series with the series (4). Finally, after a number of
laborious transformations, these expressions for the first eight cumulants are as follows:
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These results correspond to the well-known expressions for the cumulants, see, for
example, publication [3]. Another important conclusion which is made from the eq. (6) is
that the formulae for the cumulants do not include the first moment – mean elevation

1µ≡ζm . Hence we may ignore the mean elevation of the irregular wind-generated waves
in the future and only consider central moments of the distribution function.

A number of minor modifications of the traditional procedures considered above
allow us to obtain additional four cumulants up to the 12-th order. Fist of all, we rewrite
eq. (4) in the following way:
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and then expand logarithmic function in this expression into the power series of kn. Finally
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within the numerical values for the factors jj
o
j mmm ′′′ ,,  up to the 19-th order to be presented

in the following table.
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Table 1. The numerical values for the factors jj
o
j mmm ′′′ ,,

n 1 2 3 4 5 6 7 8 9 
o
nm2 1,0 3,0 15,0 105 945 1,0 104 1,4 105 2,0 106 3,5 107

nm2
� 1,0 9,0 30,0 70,0 135 231 364 540 765 

nm2
�� 19,5 355 1563 5419 1,6⋅104 4,0⋅104 9,05 104 1,9⋅105 3,6⋅105

o
nm 12 � 3,0 30,0 315 3780 5,2⋅104 8,1⋅105 1,42⋅107 2,8⋅108 5,9⋅109

12 �
�

nm 12,8 24,7 43,7 71,6 110 162 228 311 413 
12 �

��
nm 168 666 1884 4592 1,0⋅104 2,0⋅104 3,7⋅104 6,4⋅104 1,1⋅105

It is very evident from the table that the numerical values for the factors jm′  and

especially for jm ′′  in eq. (14) grow considerably for high orders of the moments. It means
that the convergence of the asymptotic series (5) may fall for extreme values of the
wave steepness and wave elevations.

The numerical evaluation of the distribution moments nµ  allows us to get the
corresponding estimations for cumulants of the characteristic function of the distribution,
and for the first eight cumulants the final results are as follows
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where ,~ j
j ζζ σλ=λ  are the normalized cumulants and dots in the brackets are used in

the formulae to indicate the values of order ( ) 2, ≥δ ζ nO n , did not obtained in the approach.
Eq. (15) only includes the first and second approaches on the steepness

mλπσ=δ ζζ 2 ; the high terms of order ( ) 4, ≥δ ζ nO n  would be the subject of the
further analysis. The formulae in eq. (20) display that cumulant of order j is proportional
to the power of wave steepness of order (j-2) and this result has to be considered as very
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further analysis. The formulae in eq. (20) display that cumulant of order j is proportional
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can be expressed in the terms of the moments taken respectively to the mean value (or
central moments) nµ  of the distribution function by the following relations:
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where 1µ≡ζm  is the mean value of wave elevations and this value is typically very small
for wind-generated waves in real sea conditions[1, 2, 6].

According to the traditional procedures [1, 3], the power series for the characteristic
function in eq. (4) are transformed into the following exponential form
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where λj is the j-th order cumulants of the characteristic function. For the estimations of
cumulants λj in terms of moments µn, we need to expand the expression (5) into the
power series and than to compare this series with the series (4). Finally, after a number of
laborious transformations, these expressions for the first eight cumulants are as follows:
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These results correspond to the well-known expressions for the cumulants, see, for
example, publication [3]. Another important conclusion which is made from the eq. (6) is
that the formulae for the cumulants do not include the first moment – mean elevation

1µ≡ζm . Hence we may ignore the mean elevation of the irregular wind-generated waves
in the future and only consider central moments of the distribution function.

A number of minor modifications of the traditional procedures considered above
allow us to obtain additional four cumulants up to the 12-th order. Fist of all, we rewrite
eq. (4) in the following way:
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and then expand logarithmic function in this expression into the power series of kn. Finally
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especially for jm ′′  in eq. (14) grow considerably for high orders of the moments. It means
that the convergence of the asymptotic series (5) may fall for extreme values of the
wave steepness and wave elevations.

The numerical evaluation of the distribution moments nµ  allows us to get the
corresponding estimations for cumulants of the characteristic function of the distribution,
and for the first eight cumulants the final results are as follows
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where ,~ j
j ζζ σλ=λ  are the normalized cumulants and dots in the brackets are used in

the formulae to indicate the values of order ( ) 2, ≥δ ζ nO n , did not obtained in the approach.
Eq. (15) only includes the first and second approaches on the steepness

mλπσ=δ ζζ 2 ; the high terms of order ( ) 4, ≥δ ζ nO n  would be the subject of the
further analysis. The formulae in eq. (20) display that cumulant of order j is proportional
to the power of wave steepness of order (j-2) and this result has to be considered as very
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Eq. (15) only includes the first and second approaches on the steepness

mλπσ=δ ζζ 2 ; the high terms of order ( ) 4, ≥δ ζ nO n  would be the subject of the
further analysis. The formulae in eq. (20) display that cumulant of order j is proportional
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important for the next reason. The attempts to obtain the high order cumulants leads to
the necessarily of the including of high order nonlinear terms in the powers of the wave

elevations n
wζ .

Note that here we used the characteristic wave steepness δζ as a measure of the
intensity of irregular wave motion in real sea conditions as it has been done by the authors
of the publication [3]. The numerical estimations for this steepness are as follows. If we
would suppose that significant wave height may achieve the extreme values of about hs ~
~ 15÷18m and use the well-known relation ζσ= 0,4sh , then for the irregular waves with
the average wavelength about λm ~ 150÷200m the characteristic steepness δζ would be
no more than 0,15…0,22.

It is very important to verify the theoretical results (20) and for this purpose we
would compare it with the independent experimental results which have been derived at
the wave-generated tank of NASA Wallops Flight Center in the USA [3]. In the Center
hundred samples of the irregular wave trains with different values of characteristic
steepness δζ were generated and the following approximation formulae for the first eight
cumulants were obtained
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Some comparisons of the results (15) and (16) are shown in Fig. 3. In the Fig. 3 the
dots with one sigma bars indicate the experimental results; the solid lines indicate the
corresponding approximations of the experimental results (16) and the dashed lines
represent the author's results (15). On the graphics the characteristic steepness

04,02 ≤πδ=δ ζm  has also been used. The general conclusions from the result
comparison are as follows:

�) The cumulants 73
~,~ λλ �� 8

~λ  show quite good comparison of the results for the
interval of the characteristic steepness 04,0≤δm  (Fig. 3,�,�,f).

b) Absolute values of the cumulants 5
~λ  and 6

~λ  show a relatively good comparison

of the results especially for the small values of the characteristic steepness 02,0≤δm ,
but the signs of the cumulants were opposite. There is no reasonable explanation of the
sign discrepancy at present (Fig. 3,c,d).

c) For the cumulant 4
~λ  (Fig. 3,b) there is a very different dependence on the wave

steepness both for the experiments and for the theoretical estimations. Now we do not
have any reasonable explanations for the discrepancy of the results. Note that the values
of  this cumulant are relatively small but its theoretical estimations are growing very
sharply for the characteristic wave steepness 01,0≥δm .

d) Finally, all the cumulants show a significant growth for high values of the
characteristic wave steepness δm > 0,025 – 0,030 which correspond to the extreme
waves in real sea conditions.
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of irregular wave motion in real sea conditions 
as it has been done by the authors of the pub-
lication [3]. The numerical estimations for this 
steepness are as follows. If we would suppose 
that significant wave height may achieve the
extreme values of about hs ~ 15 ÷ 18 m and use 
the well-known relation hs = 4,0σζ, then for the 
irregular waves with the average wavelength 
about λm ~ 150 ÷ 200 m the characteristic steep-
ness δζ would be no more than 0,15…0,22.
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It is very important to verify the theoreti-
cal results (20) and for this purpose we would 
compare it with the independent experimental 
results which have been derived at the wave-
generated tank of NASA Wallops Flight Center 

in the USA [3]. In the Center hundred samples 
of the irregular wave trains with different val-
ues of characteristic steepness δζ were gener-
ated and the following approximation formulae 
for the first eight cumulants were obtained

Table 1. The numerical values for the factors 
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Table 1. The numerical values for the factors jj
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n 1 2 3 4 5 6 7 8 9 
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It is very evident from the table that the numerical values for the factors jm′  and

especially for jm ′′  in eq. (14) grow considerably for high orders of the moments. It means
that the convergence of the asymptotic series (5) may fall for extreme values of the
wave steepness and wave elevations.

The numerical evaluation of the distribution moments nµ  allows us to get the
corresponding estimations for cumulants of the characteristic function of the distribution,
and for the first eight cumulants the final results are as follows
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where ,~ j
j ζζ σλ=λ  are the normalized cumulants and dots in the brackets are used in

the formulae to indicate the values of order ( ) 2, ≥δ ζ nO n , did not obtained in the approach.
Eq. (15) only includes the first and second approaches on the steepness

mλπσ=δ ζζ 2 ; the high terms of order ( ) 4, ≥δ ζ nO n  would be the subject of the
further analysis. The formulae in eq. (20) display that cumulant of order j is proportional
to the power of wave steepness of order (j-2) and this result has to be considered as very
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important for the next reason. The attempts to obtain the high order cumulants leads to
the necessarily of the including of high order nonlinear terms in the powers of the wave

elevations n
wζ .

Note that here we used the characteristic wave steepness δζ as a measure of the
intensity of irregular wave motion in real sea conditions as it has been done by the authors
of the publication [3]. The numerical estimations for this steepness are as follows. If we
would suppose that significant wave height may achieve the extreme values of about hs ~
~ 15÷18m and use the well-known relation ζσ= 0,4sh , then for the irregular waves with
the average wavelength about λm ~ 150÷200m the characteristic steepness δζ would be
no more than 0,15…0,22.

It is very important to verify the theoretical results (20) and for this purpose we
would compare it with the independent experimental results which have been derived at
the wave-generated tank of NASA Wallops Flight Center in the USA [3]. In the Center
hundred samples of the irregular wave trains with different values of characteristic
steepness δζ were generated and the following approximation formulae for the first eight
cumulants were obtained
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Some comparisons of the results (15) and (16) are shown in Fig. 3. In the Fig. 3 the
dots with one sigma bars indicate the experimental results; the solid lines indicate the
corresponding approximations of the experimental results (16) and the dashed lines
represent the author's results (15). On the graphics the characteristic steepness

04,02 ≤πδ=δ ζm  has also been used. The general conclusions from the result
comparison are as follows:

�) The cumulants 73
~,~ λλ �� 8

~λ  show quite good comparison of the results for the
interval of the characteristic steepness 04,0≤δm  (Fig. 3,�,�,f).

b) Absolute values of the cumulants 5
~λ  and 6

~λ  show a relatively good comparison

of the results especially for the small values of the characteristic steepness 02,0≤δm ,
but the signs of the cumulants were opposite. There is no reasonable explanation of the
sign discrepancy at present (Fig. 3,c,d).

c) For the cumulant 4
~λ  (Fig. 3,b) there is a very different dependence on the wave

steepness both for the experiments and for the theoretical estimations. Now we do not
have any reasonable explanations for the discrepancy of the results. Note that the values
of  this cumulant are relatively small but its theoretical estimations are growing very
sharply for the characteristic wave steepness 01,0≥δm .

d) Finally, all the cumulants show a significant growth for high values of the
characteristic wave steepness δm > 0,025 – 0,030 which correspond to the extreme
waves in real sea conditions.
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It is very important to verify the theoretical results (20) and for this purpose we
would compare it with the independent experimental results which have been derived at
the wave-generated tank of NASA Wallops Flight Center in the USA [3]. In the Center
hundred samples of the irregular wave trains with different values of characteristic
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Some comparisons of the results (15) and (16) are shown in Fig. 3. In the Fig. 3 the
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of the results especially for the small values of the characteristic steepness 02,0≤δm ,
but the signs of the cumulants were opposite. There is no reasonable explanation of the
sign discrepancy at present (Fig. 3,c,d).

c) For the cumulant 4
~λ  (Fig. 3,b) there is a very different dependence on the wave

steepness both for the experiments and for the theoretical estimations. Now we do not
have any reasonable explanations for the discrepancy of the results. Note that the values
of  this cumulant are relatively small but its theoretical estimations are growing very
sharply for the characteristic wave steepness 01,0≥δm .

d) Finally, all the cumulants show a significant growth for high values of the
characteristic wave steepness δm > 0,025 – 0,030 which correspond to the extreme
waves in real sea conditions.
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Fig. 4. Convergence of the asymptotical sets for different values of wave steepness
and wave elevations:

a – 1=σζ ζw ; b – 3=σζ ζw ; c – 4=σζ ζw

One can see the existence of the non-convergence of asymptotic series for great
values of ζw and δζ. In general there are two limited cases in the convergence of the
asymptotic series; the first one is that for the wave steepness about ( )321=λmsh  the

convergence takes place in the interval [ ]0,5;5,4−∈σζ ζw . And the second one is that

for the wave steepness ( )91=λmsh  there is no convergence for any value of the
elevations ζw. The problem of the non-convergence of asymptotic series would be the
subject of the investigations in the future.

Conclusions. 1. Nonlinear generalizations of short-term distributions of wind-
generated wave elevations in extreme sea conditions by using characteristic function
technique and corresponding asymptotic Gram-Edgeworht's sets can be considered as
effective and useful technique. In the framework of traditional approach the asymptotical
sets have been derived up to the 12-th order. 2. The explicit expressions for the cumulants
of characteristic function up to the 12-th order have been derived and its numerical
estimations have been done for the first eight cumulants by using nonlinear wave-group
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Fig. 3. Comparisons of the theoretical estimations for the cumulants with the experimental results [3]
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 [–4,5; 5,0] And 
the second one is that for the wave steepness  
(hs/λm = 1/9) there is no convergence for any 
value of the elevations ζw. The problem of the 
non-convergence of asymptotic series would be 
the subject of the investigations in the future.

CONCLUSIONS
1. Nonlinear generalizations of short-term 

distributions of windgenerated wave elevations 
in extreme sea conditions by using characteristic 
function technique and corresponding asymptot-
ic Gram-Edgeworht’s sets can be considered as 
effective and useful technique. In the framework 
of traditional approach the asymptotical sets have 

been derived up to the 12-th order. 2. The explic-
it expressions for the cumulants of characteristic 
function up to the 12-th order have been derived 
and its numerical estimations have been done 
for the first eight cumulants by using nonlinear
wave-group model of the 6-th order for energetic 
component of irregular wave motion. The results 
displayed that cumulants are proportional to the 
powers of the characteristic wave steepness δζ 
according to the law 
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model of the 6-th order for energetic component of irregular wave motion. The results
displayed that cumulants are proportional to the powers of the characteristic wave
steepness δζ according to the law ( ) 3,~ 2 ≥δλ −

ζ jO j
j  and for this reason we have to

use high order nonlinear wave models in the estimations of high order moments and
cumulants of the distribution. 3. The convergence of the asymptotical sets depends on the
values of wave elevations, characteristic wave steepness and the order of the approximation
and this problem would be considered in the future work.
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model of the 6-th order for energetic component of irregular wave motion. The results
displayed that cumulants are proportional to the powers of the characteristic wave
steepness δζ according to the law ( ) 3,~ 2 ≥δλ −

ζ jO j
j  and for this reason we have to

use high order nonlinear wave models in the estimations of high order moments and
cumulants of the distribution. 3. The convergence of the asymptotical sets depends on the
values of wave elevations, characteristic wave steepness and the order of the approximation
and this problem would be considered in the future work.
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a b c
Fig. 4. Convergence of the asymptotical sets for different values of wave steepness and wave elevations:  
a — ζw /σζ = 1, b — ζw /σζ = 3, c — ζw /σζ = 4
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