АЛГОРИТМИЧЕСКИЕ ПРОЦЕДУРЫ КВАЗИЛИНЕАРИЗАЦИИ ДИНАМИЧЕСКИХ МОДЕЛЕЙ МОРСКИХ ПОДВИЖНЫХ ОБЪЕКТОВ

В. Л. Тимченко, доц., канд. техн. наук; О. А. Ухин, асп.

Национальный университет кораблестроения, г. Николаев

Аннотация. Рассмотрены алгоритмические процедуры квазилинеаризации динамических моделей морских подвижных объектов. Проведен сравнительный анализ модифицированной процедуры линеаризации с методами разложения в ряд Тейлора и наименьших квадратов и приведены результаты моделирования, демонстрирующие более высокую точность полученных моделей.

Ключевые слова: модифицированная процедура квазилинеаризации, нелинейные модели, морской подвижный объект.

Анотація. Розглянуто алгоритмічні процедури квазілінеаризації динамічних моделей морських рухомих об'єктів. Проведено порівняльний аналіз модифікованої процедури лінеаризації з методами розкладання в ряд Тейлора та найменших квадратів і наведено результати моделювання, які демонструють більш високу точність отриманих моделей.

Ключові слова: модифікована процедура квазілінеаризації, нелінійні моделі, морський рухомий об'єкт.

Abstract. The article deals with algorithmic procedures of quasilinearization of the dynamic models of the marine motion objects. A comparative analysis of the modified procedure of linearization with methods of the Taylor series expansions and least-squares is conducted. Simulation results that show a higher accuracy of the obtained models are presented.

Keywords: modified procedure of linearization, non-linear models, marine motion object.

ПОСТАНОВКА ПРОБЛЕМЫ

Проблема управления динамическими объектами — одна из классических задач теории управления. Особое место в классе управляемых систем занимают объекты, динамические процессы в которых описываются нелинейными дифференциальными уравнениями. Это объясняется широким спектром нели-

нейных функций, которые могут входить в математическую модель объекта управления, вследствие чего при проектировании системы управления каждый объект требует специального подхода. Для построения систем управления с помощью известных классических методов синтеза исходные нелинейные уравнения обычно необходимо преобразовать в линейные.

АНАЛИЗ ПОСЛЕДНИХ ИССЛЕДОВАНИЙ И ПУБЛИКАЦИЙ

Для систем со «слабой» нелинейностью используются метод наименьших квадратов и разложение в ряд Тейлора [8, 9]. Оба метода приводят к практически одинаковым результатам. Метод касательной аппроксимации (разложение в ряд Тейлора) более простой, а аппроксимация по методу наименьших квадратов более точная, если многочлен имеет порядок, равный трем или больше. Метод наименьших квадратов заключается в нахождении такой линейной функции, которая обеспечивает наименьшее значение суммарной квадратичной ошибки отклонения искомой функции для всех точек измерений. В некоторых случаях предлагается замена нелинейного элемента системы линейным [4]. Однако в этих статьях не уделяется должного внимания модифицированной процедуре линеаризации.

ЦЕЛЬЮ РАБОТЫ является исследование модифицированной процедуры

линеаризации и сравнение с другими известными методами линеаризации.

ИЗЛОЖЕНИЕ ОСНОВНОГО МАТЕРИАЛА

Модифицированная процедура линеаризации используется для дифференциальных уравнений со «слабой» нелинейностью. Данная процедура состоит из следующих этапов:

- 1) линеаризация разложением в ряд Тейлора;
- 2) нахождение решения дифференциального уравнения;
- 3) подстановка решения в исходное дифференциальное уравнение.

Для нелинейной функции общего вида запишем векторно-матричное уравнение

$$\dot{\mathbf{X}} = \mathbf{A}(\mathbf{X}) \cdot \mathbf{X},$$

где X — вектор фазовых координат объекта управления;

A(X) — матрица нелинейных параметров.

При разложении в ряд Тейлора получим выражение

$$(\mathbf{X}) = \dot{\mathbf{X}}(\mathbf{X}(0)) + \frac{d\dot{\mathbf{X}}}{d\mathbf{X}}\Big|_{\mathbf{X}(0)} \cdot (\mathbf{X} - \mathbf{X}(0)) = \mathbf{A}(\mathbf{X}(0))\mathbf{X}(0) + \frac{d\mathbf{A}(\mathbf{X})\mathbf{X}}{d\mathbf{X}}\Big|_{\mathbf{X}(0)} \cdot (\mathbf{X} - \mathbf{X}(0)) =$$

$$= \mathbf{A}(\mathbf{X}(0))\mathbf{X}(0) + \mathbf{R}(\mathbf{X}(0)) \cdot (\mathbf{X} - \mathbf{X}(0)).$$

$$\dot{\mathbf{X}} = \mathbf{A}(\mathbf{X}(0))\mathbf{X}(0) + \mathbf{R}(\mathbf{X}(0)) \cdot (\mathbf{X} - \mathbf{X}(0)) = \mathbf{R}(\mathbf{X}(0))\mathbf{X} + [\mathbf{A}(\mathbf{X}(0)) - \mathbf{R}(\mathbf{X}(0))].$$
(1)

В приведенной форме уравнение (1) примет вид

$$\dot{\mathbf{X}} = \mathbf{R}\mathbf{X} + \mathbf{A}^*$$
, (2)
где $\mathbf{R} = \mathbf{R}(\mathbf{X}(0))$; $\mathbf{A}^* = \mathbf{A}(\mathbf{X}(0)) - \mathbf{R}(\mathbf{X}(0))$.

Решение дифференциального уравнения (2) находим следующим образом:

$$\mathbf{X}^{*}(t) = \mathbf{e}^{\mathbf{R}t}\mathbf{X}(0) + \int_{0}^{t} e^{\mathbf{R}(t-\tau)}\mathbf{A}^{*}d\tau =$$

$$= \mathbf{e}^{\mathbf{R}t}\mathbf{X}(0) + (e^{\mathbf{R}t} - \mathbf{E})\mathbf{R}^{-1}\mathbf{A}^{*}. \tag{3}$$

Исходное нелинейное уравнение с учетом (3) примет вид

$$\dot{\mathbf{X}} = \mathbf{A}(\mathbf{X}^*) \cdot \mathbf{X}.$$

Рассмотрим в качестве нелинейного объекта судно, управляемое пером руля в потоке жидкости, создаваемой винтом. При движении судна управление углом поворота руля α может выполняться по различным управляемым координатам: продольной и поперечной скоростям (смещению), угловой скорости (углу курса) — рис. 1.

Уравнения динамики судна при слабом маневрировании (малых углах дрейфа) и допущениях, принятых в [6], имеет вид

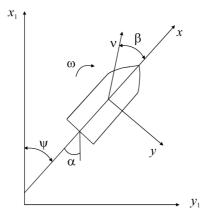


Рис. 1. Движение судна в неподвижной (x_1, y_1) и подвижной (x, y) системах координат

$$\frac{d\beta(t)}{dt} + q_{21}\beta(t) + r_{21}\overline{\omega} + s_{21}\alpha + h_1\beta(t)|\beta(t)| = 0;$$

$$\frac{d\overline{\omega}}{dt} + q_{31}\beta(t) + r_{31}\overline{\omega} + s_{31}\alpha = 0.$$
(4)

Для оценки эффективности линеаризации применим линейный закон управления

$$\alpha = -k_{\rm B}\beta(t). \tag{5}$$

Используя формулы, приведенные в [5, 6], и подставив (5) в уравнение (4), получим

$$\frac{d\beta(t)}{dt} + \left[(q_{21} + \frac{r_{21}q_{31}}{r_{31}}) - (s_{21} + \frac{r_{21}s_{31}}{r_{31}})k_{\beta} \right] \beta(t) + h_{1}\beta(t) |\beta(t)| = 0.$$

Для угла дрейфа $\beta > 0$ будем иметь

$$\frac{d\beta(t)}{dt} + h_2\beta(t) + h_1\beta^2(t) = 0. \tag{6}$$

Примем для модели судна численные значения: $h_2 = 0.04$, $h_1 = -0.015$ и запишем уравнение (6) в виде

$$\dot{\beta}(t) = -0.04\beta(t) + 0.015\beta^{2}(t). \quad (7)$$

Так как максимальный порядок $\frac{d\beta(t)}{dt} + h_2\beta(t) + h_1\beta^2(t) = 0.$ (6) многочлена равен двум, для сравнения с модифицированной процедурой линемногочлена равен двум, для сравнения аризации целесообразно использовать разложение в ряд Тейлора [9]. Тогда

$$\dot{\beta}(t) = -0.04\beta(t) + 0.015(2\beta_0\beta(t) - \beta_0^2).$$

Приняв $\beta_0 = 0,1$, запишем уравнение в виде

$$\dot{\beta}(t) = -0.04\beta + 0.015(0.1041e^{-0.037t} - 0.0041)\beta(t) =$$

$$= (0.0015615e^{-0.037t} - 0.0400615)\beta(t). \tag{8}$$

Решение линейного дифференциального уравнения (8) будет иметь вид

$$\beta(t) = 0.1041e^{-0.037t} - 0.0041. \tag{9}$$

Для применения модифицированной процедуры линеаризации подставим полученное решение дифференциального уравнения в исходное уравнение:

$$\dot{\beta}(t) = -0.04\beta + 0.015(0.1041e^{-0.037t} - 0.0041)\beta(t) =$$

$$= (0.0015615e^{-0.037t} - 0.0400615)\beta(t). \tag{10}$$

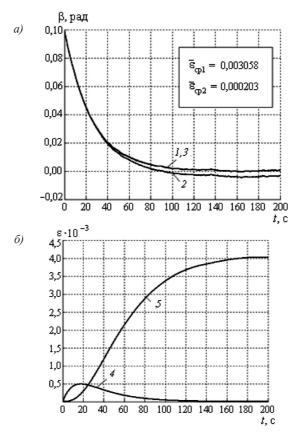


Рис. 2. Графики изменения угла дрейфа (a) и ошибки (δ): I — для численного решения нелинейного уравнения (7); 2 – для аналитического решения на основе разложение в ряд Тейлора (9); 3 — при использовании модифицированной процедуры линеаризации (11); 4 — ошибка при использовании модифицированной процедуры линеаризации; 5 — ошибка при разложении в ряд Тейлора

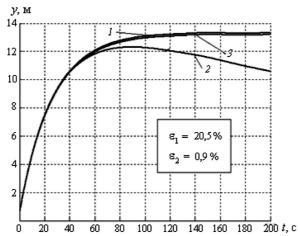


Рис. 3. Графики поперечного отклонения: 1 — для нелинейного уравнения; 2 — для разложения в ряд Тейлора; 3 — для модифицированной процедуры линеаризации

Решение полученного уравнения с переменными коэффициентами (10) найдем в виде

$$\beta(t) = 0.1e^{(-0.0422e^{-0.037t} - 0.0400615t + 0.0422)}. (11)$$

Графики изменения угла дрейфа и графики ошибок представлены на рис. 2.

Рис. 2 демонстрирует более высокую точность математической модели при использовании модифицированной процедуры линеаризации, чем при раз-

ложении в ряд Тейлора. При этом методе, как показывает рис. 3, поперечное отклонение от заданного имеет малую ошибку по сравнению с полученным при разложении в ряд Тейлора.

Далее рассмотрим продольногоризонтальные колебания судна, которое удерживается якорной системой стабилизации. При этом уравнение динамики судна в приведенной форме имеет следующий вид [2]:

$$\ddot{x} = -0.06\dot{x} + 0.0003x + 1.5 \cdot 10^{-7} x^{3}. \tag{12}$$

Так как степень полинома правой части (12) равна трем, для линеаризации воспользуемся методом наименьших квадратов и получим уравнение

$$\ddot{x} = -0.06\dot{x} + 0.0003x + 1.5 \cdot 10^{-7} (1977.6x - 32328) =$$

$$= -0.06\dot{x} + 0.00059664x - 0.0048492,$$
(13)

Решение уравнения (13) примет вид

$$x = 19,31e^{0,009t} + 2,52e^{-0,069t} + 8,17.$$
 (14)

Для применения модифицированной процедуры линеаризации подставим полученное решение (14) в исходное уравнение (12):

$$\ddot{x} = -0.06\dot{x} + 0.0003x + 1.5 \cdot 10^{-7} (19.31e^{0.009t} + 2.52e^{-0.069t} + 8.17)^2 x. \tag{15}$$

Запишем (15) в виде уравнений пространства состояний:

$$\dot{x}_1 = x_2;$$

$$\dot{x}_2 = (0,0003 + 1,5 \cdot 10^{-7} (19,31e^{0,009t} + 2,52e^{-0,069t} + 8,17)^2)x_1 - 0,06x_2.$$

В матричной форме:

$$\mathbf{\dot{X}} = \mathbf{A}(t)\mathbf{X};$$

$$\mathbf{A}(t) = \begin{bmatrix} 0 & 1 \\ 0,0003 + 1,5 \cdot 10^{-7} (19,31e^{0,009t} + 2,52e^{-0,069t} + 8,17)^2 & -0,06 \end{bmatrix}.$$

Данное дифференциальное уравнение решается с использованием матрицанта. Решение будет иметь вид [7]

$$x(t) = \mathbf{M}(t)x(0),$$

где $\mathbf{M}(t)$ — матрицант, определяемый с помощью метода последовательных приближений:

$$\mathbf{M}_{n+1} = \mathbf{E} + \int_{t_0}^{t_1} \mathbf{A}(\tau) d\tau,$$

где
$$\mathbf{M}_0 \equiv 0, n = 0, 1, 2...$$

Аналитическое решение линейного уравнения (15) с переменными коэффи-

циентами с помощью матрицанта достаточно громоздко, поэтому используем численные методы [1,3].

Применив модифицированную процедуру линеаризации и метод наименьших квадратов, получим кривые реакции якорной системы (рис. 4).

Как следует из рис. 4, использование модифицированной процедуры линеаризации дает, по сравнению с методом наименьших квадратов, более точную математическую модель. При подстановке данных уравнений для расчета силы натяжения троса получим графики сил на рис. 5.

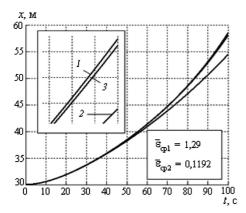


Рис. 4. Графики продольного смещения судна: 1 — численное решение нелинейного уравнения; 2 — после линеаризации методом наименьших квадратов; 3 — после линеаризации модифицированной процедурой линеаризации

Как видно, сила, полученная при использовании модифицированной процедуры линеаризации, более приближена к исходной, чем вычисленная с помощью метода наименьших квадратов.

ВЫВОДЫ

1. Результаты моделирования показали, что модифицированная процедура линеаризации позволяет получить более точную линейную математическую модель из исходной нелинейной по

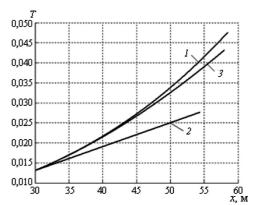


Рис. 5. Графики изменения силы натяжения троса: *I* — численное решение исходной математической модели; *2* — при использовании метода наименьших квадратов; 3 — с применением модифицированной процедуры линеаризации

сравнению с классическими методами линеаризации нелинейных объектов со «слабой» нелинейностью (разложение в ряд Тейлора, метод наименьших квадратов). 2. Используя полученные нестационарные линейные модели морских подвижных объектов, можно применять ранговые аналитические критерии оценки системной управляемости и достаточно хорошо развитые для линейных моделей методы синтеза систем автоматического управления.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- [1] **Бахвалов, Н. С.** Численные методы [Текст] / Н. С. Бахвалов. М. : Наука, 1973. 663 с.
- [2] **Владинец, Г. И.** Методика расчета усилий в якорной системе [Текст] / Г. И. Владинец, В. Л. Тимченко // Совершенствование судовых устройств и гибких конструкций: сб. науч. трудов. Николаев: НКИ, 1988. С. 68–72.
- [3] **Калиткин, Н. Н.** Численные методы [Текст] / Н. Н. Калиткин. М. : Наука, 1978. 512 с.
- [4] **Кеглин, Б. Г.** Линеаризация динамических систем с нелинейными элементами [Текст] / Б. Г. Кеглин // Вестник Брянского государственного технического университета. Брянск: БГТУ, 2007. № 4 (16). С. 10–15.
- [5] **Лукомский, Ю. А.** Системы управления морскими подвижными объектами [Текст] : учебник / Ю. А. Лукомский, В. С. Чугунов. Л. : Судостроение, 1988. 272 с.

- [6] **Першиц, Р. Я.** Управляемость и управление судном [Текст] / Р. Я. Першиц. Л.: Судостроение, 1983. 272 с.
- [7] **Сигорский, В. П.** Математический аппарат инженера [Текст] / В. П. Сигорский. М.: Техника, 1977. 768 с.
- [8] **Тимченко, В. Л.** Квазілінеаризація нелінійних динамічних систем при допустимих коливаннях [Текст] / В. Л. Тимченко // Комп'ютерні технології // Вісник Миколаївського державного гуманітарного університету. Миколаїв : МДГУ, 2008. № 77. С. 190–196.
- [9] **Чаки, Ф.** Современная теория управления [Текст] / Ф. Чаки. М. : Мир, 1975. 424 с.